WebApr 19, 2024 · In “ Learning to Prompt for Continual Learning ”, presented at CVPR2024, we attempt to answer these questions. Drawing inspiration from prompting techniques in natural language processing, we propose a novel continual learning framework called Learning to Prompt (L2P). Instead of continually re-learning all the model weights for … WebContinual learning on graphs is largely unexplored and existing graph continual learning approaches are limited to the task-incremental learning scenarios. This paper proposes a graph continual learning strategy that combines the architecture-based and memory-based approaches. The structural learning strategy is driven by reinforcement learning ...
CGLB: Benchmark Tasks for Continual Graph Learning
WebSep 7, 2024 · 4.2 Continual Learning Restores Balanced Performance. In order to deal with catastrophic forgetting, a number of approaches have been proposed, which can be roughly classified into three types []: (1) regularisation-based approaches that add extra constraints to the loss function to prevent the loss of previous knowledge; (2) architecture … WebFeb 1, 2024 · Continual Learning of Knowledge Graph Embeddings. Abstract: In recent years, there has been a resurgence in methods that use distributed (neural) … chilly clickbait
[2007.03316] Graph Neural Networks with Continual Learning for Fake ...
WebSep 28, 2024 · Abstract: Despite significant advances, continual learning models still suffer from catastrophic forgetting when exposed to incrementally available data … WebSep 23, 2024 · This paper proposes a streaming GNN model based on continual learning so that the model is trained incrementally and up-to-date node representations can be obtained at each time step, and designs an approximation algorithm to detect new coming patterns efficiently based on information propagation. Graph neural networks (GNNs) … WebJun 2, 2024 · Continual learning on graph data, which aims to accommodate new tasks over newly emerged graph data while maintaining the model performance over existing tasks, is attracting increasing attention from the community. Unlike continual learning on Euclidean data ($\textit{e.g.}$, images, texts, etc.) that has established benchmarks and … chilly city